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Markov Decision Chains

A. Hordijk

1. INTRODUCTION
Many real-life phenomena have a stochastic dynamic behaviour. Mathe-
matical models for analyzing these phenomena are stochastic processes. For
example, in order to study the queue-length at a counter, the mathematical
model supposes an arrival process of customers and a distribution of ser-
vice times. The most simple process already studied early this century by
A K. Erlang, the pioneer in queueing theory (see figure 1), assumes that the
probability of an arrival in an interval is linear in the length of this interval
with a rest terin that is of smaller order than the length of the interval. A
similar assumption is made for the service process. This model with Poisson
arrivals and exponential service times is denoted by M /M /1. Erlang used
this mathematical model to compute the long run blocking probability of a
telephone-exchange. His goal was to study the quality of service provided
by the Danish telephone company he was working for.

In modern telecommunication technology high-speed networks are de-
signed to carry different types of traffic, like audio, video, and data.

One of the challenging problems is to derive the optimal admission con-
trol. Given a certain load in the network, should a new arrival, which
generates traffic of a certain type, be accepted to the network or should it

control of the underlying stochastic process?
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2. MARKOV DECISION (CHAINS

There are several variants of this
mathematical model. Let us de-
scribe in more detall the discrete-
time Markov decision chain (MDC)
with a discrete state space. In this
model at discrete-time points, which
may be stochastic, a decision or con-
trol has to be taken. In the admis-
sion control model these time points
are the arrival times (epochs) of cus-
tomers. The state of the controlled
stochastic process i1s an element of
a subset of the points with integer
coordinates in a space of finite di-
mension. In the admission control

Figure 1. A.K. Erlang, the pioneer model this is the number of cus-
in queueing theory. tomers of the various types at the

various nodes in the network.
Each transition from a state at a decision epoch to the state at the next de-

cision epoch has a certain probability. These transition probabilities depend
on the chosen control. The control also influences the stochastic rewards
and costs until the next decision epoch. For example, the acceptance or
rejection of an arrival induces different costs and/or rewards.

T'he controlled stochastic process may be considered over a finite or an
infinite time horizon. In the earlier case the total expected cost is rele-
vant, In the latter, infinite case the total (expected) discounted cost is often
considered: when discounted, the cost and/or reward at time instant ¢ is
multiplied by o' with « the discount factor, thus yielding a finite total ex-
pected cost. For discount factors close to one, the Laurent expansion of the
total discounted cost in the variable (1 — «¢) is important:

g
1l — «v

+ up + (1 —ao)uy + ...

In this expansion, g in the first term is the average cost per time unit. and
the second term wug gives the bias which is the limit of the difference of the
total cost over a finite time horizon ¢ minus ¢ times the average cost, as ¢
tends to infinity. All higher order terms have similar interpretations. The
Laurent expansion and all its terms depend on the chosen control or policy.
One considers several optimality criteria in the nondiscounted case. Average
optimality means optimizing the first term of the Laurent expansion. Bias
optimality corresponds to lexicographic optimization of the first two terms.
In comparing two policies, this means that if the average cost of policy
1 1s lower than that of policy 2, or if, the average costs being equal, the



MARKOV DECISION CHAINS

bias of policy 1 is lower than that of policy 2, then policy 1 is preferred
to policy 2.) And in more sensitive optimality criteria more terms of the
Laurent expansion are taken into account. The most sensitive criterion,
Blackwell optimality, is lexicographic optimization over all terms of the
Laurent expansion.

The history of Markov decision chains goes back to the fifties. The first
papers were on optimal inventory control. The pioneer R. Bellinan wrote his
book on Dynamic programming (1957) including a chapter on MDCs. This
book also has a chapter on Markov games, a closely connected mathematical
model. In Markov games, which were introduced by L. Shapley (1953),
there are two or more controllers, called players. The players have different
objective functions and mostly play against each other. R.A. Howard, in
his book Dynamic Programming and Markov processes (1960), focusses on
algorithms and applications.

G. de Leve introduced MDCs in The Netherlands with his Ph.D. thesis:
(Generalized Markovian decision processes (1964). This started a school of
researchers in this field, first at CWI, and later also at universities.

In the late sixties a rather complete theory was available for MDCs with
a finite number of states. This theory contains theorems on the existence of
optimal policies for the discounted, average, bias and more sensitive opti-
mality criteria. Moreover, optimality equations and methods to solve them
were obtained. For a denumerable state space only isolated results were
avallable.

Although a dozen of papers on denumerable MDCs are still appearing
each year, we can safely say that a rather complete theory for the denumer-
able case has been established now, almost twenty years later.

3. DENUMERABLE MARKOV DECISION CHAINS

One can claim that all problems in practice have a finite state space, and one
can question the importance of a theory for nonfinite models. However, in
many applications the size of the state space is large but unknown and then
often the denumerable state space is the natural model. Also the simple
structure of the optimal control is often lost, when the denumerable state
space 18 truncated to a finite one. For example, in the admission control
problem the optimal control in the case of linear holding costs is of control-
limit type, i.e., a customer of specific type is accepted as long as the total
number of customers of that type is below a certain number, the control-
limit. For computing the optimal control and even more for implementing
It 1n practice, the simple structure is crucial. By truncation of the state
space this simple structure is lost.
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Figure 2. The efficient operation of modern telephone exchanges poses several chal-
enging research problems. (Photo PTT Telecom.

S0 Ergodie theory for Markov decision chaimes
Several of the mam steps m developing the theory tor denmmerable NDC
were part of the NWO-SMO projects on Markov decision chatns, Let me
mention somme major results. Whereas the Laurent expansion of the total
discounted cost 1 the hnite model alwavs exists, strone recurrence condi-
tions. which guarantee that the stochastic process will return suthcrently
‘fast to a compact set, were necessary for a denmnerable mumber of states.

“or a satistactory theorv the recurrence conditions should not only be sat-

hiev should also be fullilled in denumerable
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ishied n the fintte state model.
state applications hike the admission control of a telecommunication net-

work.
[ classical Markov chain theory there s an extended ergodic theory, In
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is studied as [ tends to itinityv, The hinit, provided it exists, is the long
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run average reward per time uanit, i ocase X, Is the reward at time £ In



applications discounting is often not appropriate and then the most often
used criterion is this long run averave reward.

[n Markov decision theory not one Mookov chain 1s considered. but o
compact set obf Markov chains, indexed by the stationary policies, s rele-
vant. For developing a theory for demmmmerable NDC's 1t was nmportant to
generalize the ergodic theory for one Markov chain to a compact collection.

W. Doeblin was the proneer i the ergodie theory tor Markov chams. His
condition for ergodicity, later on called the Doeblin condition. required that
the expected recurrence tirme to a fintte set s untformily bounded i all start-
ing states. Clearly, this condition is too restrictive for almost all queueing
models. For exammple m the simple model with one server, Polsson arrivals
and exponential service times (the M /A /T queue). the required number of
transitions to the empty state is at least as large as the starting number of
custorers. so the expectation can never be uniformly bounded tor all start-
ing positions. In Markov chain theory Doeblin's work was generalized by
T.E. Harris and his recurrence condition s appropriate for queueing models.
In Markov decision chains there is the natural requirement that not only
the chains are recurrent to a compact set, but that also the expected total
cost until this recurrence time is finite. This inspired a condition. which we
later on called p-recurrence. In this assumption the vector ;s a bounding
vector of the vector of immediate costs and/or rewards., With this bounding
vector weighted supremum norms can be introduced. It is the appropriate
extension of the supremum norni, t.e.. the pg-norm of vector ais

. |
2l = sup —!-J~f-].. ¢ € L
z 2%

- oy

where F denotes the state space.
With this vector norm the corresponding norm on the space of matrices
Is given by

N

o %,

Aijln
o

Al = sup
é

For a given Markov chain let /2 be the matrix of transition probabilities,
and for taboo-set B let ;P2 be the matrix obtained from £ by replacing 7
by zero it ) € B.

Now the p-recurrence condition is

3 finite B such that || 3P, < 1,

[t generalizes Doeblin's condition. since for the bounding vector g = ¢ with
¢, = 1 Vi, e-recurrence is equivalent to Doeblin's condition.

The strong ergodic theorem for Markov chains can be stated as (we as-
suntie for the ease of presentation that the Markov chain is aperiodic):
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with I the matrix of stationary probabilities.
The research in the SNIC-NWO-project resulted in a theory for denu-
merable MDC that uses as basic assmption g-uniform recurrence for all
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stationary policies, el 3 finite B2 such that

wup | PO, <
f
where £7(f) 1s the matrix of trausition probabilities under the stationary
policy f. Kev results are:
e [he continuity of the Laurent expansion as function of the policy,
e | he extension of the strong ercodic theorem for Markov chains to
(-norms and Markov decision chains.

The extension to g-norms is also an original contribution to Markov chain
theory. Tt mspired important research by S.P. Mevn and R.L. Tweedie for
Markov chains with a general state space. The generalization of the strong
ergodic theorem for Markov decision chains with a general state Space 1s

currently i progress.

3.2, Markov decision chains with partial information

With the many applications in telecommunication, models with decentral-
ized control become mmportant. Consider a communication network. In a
certain node a controller has to route customers or packets to one of the
neighbouring nodes.  His control depends of course on the destination of
the packet. it may also depend on the number of jobs on the out coing links
of the node. If we model this as a MDC then the control depends on par-
tial information, the controller mayv not use all information in the complete
state description of the network. because his control may not depend on the
numbers of customers in links not adjacent to his node.

Within the SMC-NWO project in recent years MDCs with partial in-
formation have been investigated. An algorithm has been constructed for
computing a memorvless policy that uses partial information and is close
to optimal or optimal in that class of policies. The usual approach to solve
a MDC with partial information (or partial observation) is to convert this
problem to a MDC with a continuous state space via a posteriori probabili-
ties. The drawback of this approach is that the resulting MDC' is unsolvable
and also that the optimal policy at time ¢ depends on all realized states and
actions from time 1 up to time ¢, so it is far too complicated to nnplement
1t 1 practice. The new approach provides surprisingly eood and 1nple-
mentable policies in the various models studied until now.

Applyving MDCs in practical problems remains an art. for each problem a
special problem oriented method has to be constructed. The main reason is
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Figure 3. The number of states (.\), as a function of the number of customers ().

the curse of dimensionality in real-life applications. since in most cases the
number of states increases exponentially fast with the size of the problem.
Figure 3 shows the number of states of a recently analvzed closed queueing
network with customer routing and only two nodes.

Usually the situation is more favourable, and often we can handle net-

works with four nodes. However, clearly a lot of research is still waiting in
order to overcome this dimmensionality problem.
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